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Simulations of atomic structure, dynamics, and self-diffusion in liquid Au

Alexander Bogicevic, Lars B. Hansen, and Bengt I. Lundqvist
Department of Applied Physics, Chalmers University of Technology and Go¨teborg University, S-412 96 Go¨teborg, Sweden

~Received 8 July 1996!

Static and dynamic properties of liquid Au are studied with molecular-dynamics and Monte Carlo simula-
tions, using a many-body potential based on the effective-medium theory. In order to address the outstanding
question about the temperature dependence of the self-diffusion coefficient~linear, exponential, and other
dependencies have been proposed in the literature!, simulations are performed in a dense temperature mesh up
to the boiling point~3080 K!. The liquid structure at various temperatures is described in terms of the pair
distribution function, which is compared with x-ray data. Computed thermodynamic properties are in good
agreement with experiment. Dynamic properties are represented by the velocity correlation function and
self-diffusion coefficients of high accuracy. The temperature dependence of the diffusivity is qualitatively
compared with several theoretical model predictions. A proportionality of the diffusion coefficient to the square
of the temperature is found, in agreement with recent microgravity experiments on other nonsimple liquids. An
analysis is made of atomic trajectories and the velocity correlation function at various temperatures, to provide
physical arguments for and against different diffusion models in liquids. One of the results of this study is that
it opposes diffusion processes with a single nonzero activation energy of, e.g., Arrhenius type. A discussion on
this topic is included.@S1063-651X~97!04305-5#

PACS number~s!: 66.10.2x, 61.20.Ja
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I. INTRODUCTION

Liquids are less understood than solids and gases@1,2#.
The major reason for this is the fact that, unlike for soli
and gases, there exists no idealized model for liquids. Y
the liquid state is one of the fundamental states of matte
fact that by itself calls for an understanding of, e.g., str
tural, dynamical, and transport properties. In addition, th
are important applications.

An understanding of the diffusion processes in liquid m
als and metal alloys is of great importance for, e.g., the m
allurgical industry. Many metallic materials are manufa
tured after careful refining in the molten state, whe
diffusion coefficients are essential ingredients in calculat
chemical rate constants. The diffusion of atoms throug
supersaturated alloy is a fundamental step in the va
liquid-solid ~VLS! mechanism of single-crystal whiske
growth. In close connection to this, the distribution of solu
atoms during solidification also crucially depends on th
diffusive motion. Towards this background, it is surprisi
that it is still today very hard to find experimental data
diffusion coefficients for most systems, and that the exist
theoretical and empirical descriptions of liquids have m
limited success.

The best covered liquids are undoubtedly the conden
group-VIII rare-gas atoms, together with the group-I alka
metal atoms. The equilibrium properties of these simple
uids have been well understood for decades. For dynamic
liquids there has also been a substantial amount of prog
@1#. Important contributions have been made to the gen
theory of time-correlation functions@3#, at least for liquids
under ordinary thermodynamic conditions, even though
area is not as settled as the one for the corresponding e
librium properties.

For simple liquids, a considerable effort has been put i
computer simulations, attempting to bridge the gap betw
551063-651X/97/55~5!/5535~11!/$10.00
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theory and experiment. The soul of any simulation lies in
potential used in describing the interaction of its constituen
Therefore, in order to theoretically examine a liquid in
meaningful way, it is essential to have some form of phy
cally sound model potential. One of the simplest descriptio
of a liquid is given by the so-called hard-sphere mod
which is of purely repulsive nature@1#. This model has only
one adjustable parameter, the hard-sphere diameter. By
simplification of the atomic interactions, it is possible to an
lytically calculate various properties of the hard-sphere ‘‘li
uid.’’

One variety of the hard-sphere model is accomplished
adding a square-well attractive part extending some dista
away from the shell of the sphere@1#. Another common, and
smoother, interatomic potential for simple liquids is the s
called Lennard-Jones 6-12 potential, which has two para
eters, the collision diameter and the potential depth. Mod
of this kind rely on computer simulations for the calculatio
of various system properties.

All of these pair-potential models can fairly well repro
duce the experimentally obtained structures of at least s
simple liquids, typically expressed in the form of distributio
functions@4,5#. By allowing the hard-sphere diameters to
temperature dependent, the diffusion behavior at vari
temperatures can sometimes be well accounted for@6#. These
are remarkable results. They owe their fact to the predo
nant repulsive short-range behavior stemming from the P
principle, preventing overlap of the outer electron shells.
candidate interaction potentials must incorporate this sh
short-range repulsive feature; this is also the case for
models mentioned above. The attractive forces, acting
long range, vary much more smoothly. While minimally i
fluencing the structure, these forces provide an attrac
background that gives rise to the cohesive energy require
stabilize the liquid. The analytical theory proposed
Weeks, Chandler, and Andersen@7# in the 1970s, in particu-
5535 © 1997 The American Physical Society
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lar, makes it clear precisely how the sharply repulsive par
a model interatomic potential~Lennard-Jones! determines
liquid structure, and how thermodynamics is explained
little more than a mean-field correction arising from the
mainder of the potential.

Ordinary pair potentials, the most common one being
Lennard-Jones potential mentioned above, have been wi
used to describe metallic liquids. Even for simple liquid
however, experiments have shown the effective pair po
tial to have a form different from the Lennard-Jones one.
course, progress has been made, owing to the relati
simple electron structure of the group-VIII and -I atoms.
fact, most of what we know about~simple! liquids stems
from the pioneering work on hard-sphere and Lennard-Jo
liquids performed during the last three decades.

These kinds of potentials omit a crucial piece of the ph
ics of metallic bonding, however, and attempts to treat ot
than simple metals have not met the same success. Fo
stance, all purely pairwise-potential models produce
Cauchy relation between the elastic constants,C12/C4451,
which does not apply for real metals, where this ratio f
e.g., Au, is 3.7@8#. The nonpairwise potential used in th
paper improves on this considerably, see below. Also,
pairwise models fail to describe surface properties, such
surface relaxation@9#, adequately. Defects are also poor
described@10#. For instance, the vacancy formation energy
strongly overestimated. Other problems with pair potent
include overestimated melting temperatures and entr
changes on melting@10#. Most computer simulations of liq
uids utilize effective pair potentials that are optimized
some kind of a fitting procedure in order to describe
system well at a certain temperature, pressure, or den
Such an approach requires different potentials at, e.g., di
ent temperatures. Thus such potentials have limited value
assessing the temperature dependence of, e.g., the diffu
coefficient.

The end of the 1980s saw the birth of improved man
body-interaction potentials, such as the embedded-a
method ~EAM! @11#, the glue model~GM! @12#, and the
effective-medium theory~EMT! @13#. These theories hav
proven their quality in a variety of fields within the soli
state: segregation, alloying, melting, point defects, dislo
tions, and surface structures are just a few examp
@8,14,15#. The combination of many-body calculation
schemes that scale linearly with the number of atoms ra
than cubically, and improvements in raw computer pow
provide a basis that should put computer simulations of
uids into a renaissance.

The main purpose of this work is to simulate the atom
self-diffusion in pure liquid gold over the entire liquid tem
perature range using a many-body EMT potential. Gold
chosen for several reasons. It is a noble metal, i.e., n
simple. Furthermore, well-founded and -tested EMT pot
tials are available@16#. For instance, the following Au prop
erties have been well accounted for in the EMT: surfa
alloying @17#, surface reconstructions@9#, and bulk alloy dif-
fusion @18#. Finally, gold is used in the VLS process to pr
duce whiskers@19#. Needless to say, there are other expe
mentally motivated studies of, e.g., Si or Pt diffusion throu
liquid Au, but Au self-diffusion is here studied as a natu
prerequisite.
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Previous investigations@20# of liquid diffusivity utilizing
a many-body potential~EAM! report that the local structure
of the liquid transition metals Pt and Pd is quite insensitive
many-body interaction between atoms, at least near the s
liquid transition. This is not very surprising since it is we
known that the local structure is fairly insensitive even
rather different pair potentials due to the predominant infl
ence of hard-core effects@1#. However, by going from a
purely pairwise to a many-body potential, an increased
fusivity and a decrease in the efficiency of momentum tra
fer at short time scales is reported@20#. It seems therefore
that going beyond pairwise potentials mainly affects the
namics of a system. We will return to many-body effects
Sec. IV.

This paper shows that the structure, dynamics, and ato
diffusion in liquid gold can be realistically simulated. Th
quality of the interatomic potential is tested not only by
ability to reproduce the experimental liquid structure@5#, but
also through a comparison of calculated values of sev
thermal properties with existing experimental results. O
tained results are quite generally in very good agreem
with experiment. One reason for this is the fact that the e
ployed EMT description of the interactions between the
atoms accounts for the main physical effects. In particu
the anharmonic part of the potential is well described in
EMT. This results in a good description of the thermal e
pansion coefficient and the melting transition@10,21#.

Another reason is that the rapidity of liquid diffusion a
lows our molecular-dynamics simulation to follow the pr
cess over physically relevant time periods. This is often
problem for solids, where the diffusion is several orders
magnitude slower. In order to obtain good diffusivity stat
tics below the melting point, much larger systems and
longer simulation times are required.

To the authors’ knowledge, no investigations on the te
perature dependence of the self-diffusion coefficient in liq
Au have been undertaken prior to this one, although res
for the melting point diffusivity have been reported prev
ously @22–24#. This is also an extensive high-accuracy d
fusion study that covers the entire liquid temperature ra
of a nonsimple metal, employing a many-body potential.

The plan of the paper is the following. Section II gives
brief account of the EMT. The simulation method is d
scribed in Sec. III. In Sec. IV our results are presented an
Sec. V there is a discussion. Finally, Sec. VI provides o
major conclusions.

II. EFFECTIVE-MEDIUM THEORY

Our capacity to calculate the total energy of a system
interacting atoms is limited, basically, by the size and
symmetry of the system. Increasing computer power,
provements in the field of numerical methods, and the pr
ence of a working fundamental theory have together led
an enormous increase in the number of first-principles ca
lations that are available. Still, one is limited to systems
unit cells with up to about 50 atoms for such first-principl
calculations. It is thus necessary to work with simpler mo
els for larger systems. Such models may also produce ph
cal insight.

The basic idea of the effective-medium theory is to c
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55 5537SIMULATIONS OF ATOMIC STRUCTURE, DYNAMICS, . . .
culate the energy of an atom in anarbitrary environment by
first calculating it in some properly chosen reference syst
the effective medium, and then estimate the energy dif
ence between the real system and the reference system@13#.
For the latter an electron gas is chosen, so that the bin
energy of the atom is easily obtained.

Based on the density-functional theory~DFT!, the total
energy of a system of interacting atoms is written as@13#

Etot5(
i

@Ec~ i !1DEAS~ i !1DE1el~ i !#, ~1!

where the summation runs over all atoms in the system. H
the cohesive functionEc( i ) gives the energy of atomi in the
reference system, while the atomic-sphere correction t
DEAS represents the energy associated with the overlap
atomic spheres, and the one-electron termDE1el accounts for
covalent effects beyond those present in the reference
tem. For free-electron-like and noble metalsDE1el is small
and neglected here.DEAS vanishes by definition for a system
of close-packed atoms in a fcc structure at any lattice par
eter, but is nonzero whenever the atomic configuration
fers from the perfect fcc. The theory has been describe
detail in Ref. @13#. The nine parameters for the potenti
employed in these simulations are taken from Ref.@16#.
They are calculatedab initio, except for three parameter
which are empirically fit to the 0 K bulk modulus, the cohe
sive energy, and the elastic constantC44, respectively. We
emphasize that the potential is derived for the solid, and
modified in any way to better account for liquid propertie

Results for the elastic properties in EMT have been
viewed in Ref.@9#. Instead ofC125C44, as given by pair
potentials, EMT gives the relationC115C121C44. For Au,
the experimental values of the elastic constants g
(C121C44)/C1151.06, implying a mere 6% error in th
EMT result. The EMT value for the ratioC12/C44 is 3.6, as
compared to the numbers 3.7 from experiments and 1 f
pair-potential theory. For properties relevant for this stu
such as surface relaxation@9#, vacancy formation@10#, melt-
ing temperatures, and entropy changes on melting@10#, the
EMT is doing reasonably well~for Au, see below!.

III. SIMULATION DETAILS

Investigations of some static and dynamic properties
gold have been undertaken using two common simula
techniques. First, we have performed Monte Carlo~MC!
simulations in the isobaric-isothermal, or constant-NPT, en-
semble. The calculated densities have then been used a
put for subsequent molecular-dynamics~MD! simulations in
the microcanonical, or constant-NVE, ensemble. This mean
that in every MD simulation, regardless of temperature,
time-averaged pressureP̄ of the system has been practical
zero due to the relevant choice of density given by the M
simulations. Successful studies in this so-called const
NVEP̄ ensemble have been reported previously@23#.

The two-stage process of first calculating the density
other thermal properties in one ensemble, and then utiliz
the density to perform MD simulations in another ensemb
may seem somewhat tedious at first. The major reason
this choice of operational procedure is that there are rep
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that constant-pressure MD simulations tend to overestim
self-diffusion coefficients due to large density fluctuatio
@23#. The self-diffusion coefficients reported in this study a
thus calculated in an ensemble that does not allow for
density fluctuations in the MD simulation box, unlike th
usual isobaric-isoenthalpic, or constant-NPH, and isobaric-
isothermal ensembles.

The Monte Carlo simulations are performed in the f
condensed-matter temperature range of Au~0–3080 K!. A
cubic slab of 535125 atoms situated in a perfect fcc stru
ture is used as the starting point for all MC simulation
Periodic boundary conditions are imposed in all three dir
tions. At each step of the simulation, two types of chang
are introduced. They consist of displacing an atom from
geometric position, and changing the volume of the en
system using a breathing-box algorithm. The first change
lows for atomic relaxations, while the other change is
maintaining the system at constant pressure. Whether or
a particular change is accepted is determined by using
algorithm of Metropoliset al. @25#. These steps are repeate
a large number of times to achieve an equilibrium state. T
acceptance ratios of the atomic displacements and vol
changes are through a suitable choice of vibrational am
tudes held at approximately 50–60 % at each temperat
The system is initiated by making 1000 attempts at e
degree of freedom~DOF!, and data are then collected eve
20 attempts per DOF up to a total of 6000 attempts per DO
The potential energy and the instantaneous volume of
system~maintained at zero pressure! are extracted and a tim
average is made.

The molecular-dynamics simulations are performed in
liquid temperature range of 1450–3080 K. Cubic setups
835512 and 10351000 atoms are used with periodic boun
ary conditions as in the MC case. At the start of the simu
tions, the atoms are placed at their perfect fcc lattice po
tions. The density is taken from the preceding M
calculations. Each setup is first initiated for at least 20
time steps using the Andersen thermalization procedure@26#
to reach the desired temperature through stochastic temp
ture control. When simulating at temperatures near the m
ing point, the perfect crystal is first heated to a high tempe
ture to ensure total melting, and then gradually cooled do
The thermalization is then stopped and the system is allo
to evolve microcanonically for at least 20 000 time ste
saving every 20th configuration together with other relev
data. The equations of motion are numerically integrated
ing the velocity-Verlet algorithm@26# with a time step of
t52.70 fs andt52.16 fs at temperatures below and abo
about 2300 K, respectively. The total-energy conservation
the algorithm during a microcanonical simulation improv
with lower temperatures, the worst high-temperature c
losing 0.5 meV per atom over 20 000 time steps.

Throughout all MC and MD simulations in this study, w
have employed a potential that uses three~four! coordination
shells in calculating the energy and four~five! shells in the
neighbor list at temperatures below~above! 2300 K. The
enlarged potential cutoff has been introduced to compen
for decreasing density at elevated temperatures. To minim
the risk of affecting the physics of the investigated system
this change, more than half a dozen simulations with



N
rti

as
rg
ra
re
ol
e
he
s
o
he
fi-
fo
om

D
f
th
s
av
r
m

on
o
th
th
es
sy
i
cis

te
on
hu
ro
e
sy

m

ic
r
m
a

f

am
-
i
lu
st-

a

er-
ide
he
ely
r

to
ex-
nt

n-
-
at

eri-
oth
1173

the

or-
vol-

5538 55BOGICEVIC, HANSEN, AND LUNDQVIST
larger cutoff have been performed at lower temperatures.
differences are detected in any of the investigated prope
of Au.

In this study it is implicitly assumed that the electron g
remains in its ground state; this fact is invoked in the ene
potential. However, this is not the case for higher tempe
tures. It is very hard to estimate how well high temperatu
can be treated with a potential developed in and for the s
state. One way is to find a quantity that has been experim
tally determined at high temperatures, and then notice w
the simulation results start deviating markedly from the
known values. The drawback of this method is that it will n
necessarily reveal shortcomings in the potential. Anot
problem is the fact that it is usually very hard to find suf
ciently accurate experimental values. We refer to Sec. IV
such an analysis. No signs whatsoever of physical shortc
ings at higher temperatures have been detected.

The use of classical mechanics for the atoms~ions! is
justified since the treated temperatures are far above the
bye temperature,uD5165 K for Au. The relevant effects o
the degenerate Fermi gas of electrons are invoked in
effective-medium potential@13#. The treatment of atoms a
classical particles instead of quantum-mechanical w
packets is also a very good approximation since the de B
glie wavelength of Au is less than 6 pm at all treated te
peratures, far shorter than the interatomic distances.

One of the problems with all computer simulations
small systems consists of the inevitable fluctuations that
cur in one or more of the thermodynamic quantities. In
microcanonical case the finite number of particles used in
simulations results in fluctuations in kinetic energy and pr
sure of the system. Since the temperature of the atomic
tem is directly connected to its kinetic energy, fluctuations
the latter quantity manifest themselves in hindering a pre
specification of the temperature.

Another problem with using finite systems in compu
simulations is that the imposed periodic boundary conditi
easily can alter the physics of the actual systems. It is t
very important to examine the consequences that arise f
using a small number of atoms. In order to get an estimat
size effects, simulations have been performed on larger
tems. The simulation box has been enlarged from 535125 to
835512 atoms in the MC simulations and from 10351000
to 12351728 atoms in the MD calculations. The results fro
this investigation will be discussed in the next section.

IV. RESULTS

A. Monte Carlo results

The MC simulations provide several thermodynam
quantities describing the temperature-dependent behavio
the analyzed system. The potential energy and the ato
volume are extracted from each simulation and averages
made. Figure 1 shows the temperature dependence o
total energy per atom,Etot5Epot13kBT/2. The atomic vol-
umeV at each temperature is converted into a lattice par
eter, a5(4V)1/3. This relation defines the ‘‘lattice param
eter’’ also for the liquid phase. The lattice parameter
normalized to its calculated zero-temperature va
a054.06 Å, and the result is displayed in Fig. 2. The fir
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order solid-liquid transition in energy and density gives
first indication of a relevant potential.

Thermal properties provide a useful check of the int
atomic potential, since when atoms vibrate they sample w
portions of the functionals in the EMT potential, so that t
behavior of the system depends on their form even relativ
far from the 0 K fitting points. This is especially true fo
temperatures in the liquid regime.

As a test of the ability of the interatomic potential
account for low-temperature thermal properties, we have
tracted the isobaric linear expansion coefficie
a l
s[(] lna/]T)P for the solid and found it to be 16.431026

K 21. This number is in good agreement with the experime
tal value@27# of 16.731026 K 21, indicating that the anhar
monic terms in the potential seem very well described,
least for temperatures below the melting point. The exp
mental number and the result from the simulations are b
obtained as averages over the temperature interval 293–
K.

To further test the potential, we have also extracted
isobaric heat capacity,CP[(]H/]T)P , for the solid. The
calculatedCP

s528.5 J/~mol K! is in good agreement with the

FIG. 1. The total energy per atom versus temperature.

FIG. 2. MC results for the temperature dependence of the n
malized lattice parameter, defined through the average atomic
umea5(4V)1/3.
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corresponding experimental@28,29# value of 28.4 J/~mol K!,
once again verifying the accuracy of our many-body pot
tial. These results are valid at temperatures in the appr
mate@30# range of 300–1300 K.

The solid-liquid transition temperatureTs-l is estimated to
be 1398 K, slightly higher than the experimental value@31#
for the melting temperature of 1337.58 K. The two valu
are relatively close, which is somewhat fortuitous since i
usually not possible to establish the exact melting temp
ture this way due to hysteresis effects. It is more appropr
to interpret the obtained solid-liquid transition temperatu
merely as a point of mechanical instability of an infini
single crystal. There are better ways of determining the m
ing temperature of an atomic system@32#, but that is not the
aim of this study.

The volume expansion upon meltingDVs-l , given by the
magnitude of the discontinuity in Fig. 2, turns out to
5.54%, in good agreement with the experimental value@6# of
5.5%.

The heat of melting per atomDHs-l , appearing as a kink
in the total energy at the melting point in Fig. 1, is extract
from the simulations and estimated to be 0.10 eV, a little l
compared with the experimental values of 0.128 eV@27# and
0.132 eV@33,34#.

A calculation of the isobaric heat capacity for the liqu
results inCP

l 530.91 J/~mol K!, which is in good agreemen
with the experimental value@28# of 31.19 J/~mol K!. Besides
this experimental result, valid at all liquid temperatures,
other value of 29.29 J/~mol K!, valid at temperatures 1338
1600 K, has been reported@27,34#. The striking linearity of
the Etot(T) curve throughout the liquid range confirms th
fact that the heat capacity is indeed, to a very good appr
mation, temperature independent in this state of matter.

Knowledge of the detailed temperature behavior of
liquid density is very important for, e.g., model calculatio
on inverse segregation@35#. A comparison between the ca
culated and experimental@27,36# liquid densitiesr(T) is
shown in Fig. 3. The rather large difference between exp
mental curves probably stems from the fact that the data
very old ~1929, 1951!. It is experimentally established tha
the density for many liquid metals is linear in temperatu
This might in turn partly be a consequence of measurem

FIG. 3. The density of liquid Au as a function of temperatu
Besides the linear fit, several experimental results are shown.
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performed over limited temperature ranges. The linearity
plies a temperature-independent density slo
L[(]r/]T)P , and consequently a representation of the d
sity in the form

r5rs- l1L~T2Ts-l !. ~2!

A linear fit @37# of Eq. ~2! to our liquid density data, shown
in Fig. 3, results in a value for the melting point dens
rs-l of 16.9 g/cm3, slightly low compared with the experi
mental @36# 17.4 g/cm3. The same fit yieldsL52.1 mg/
~cm3 K!, somewhat high compared with previously report
@27,36# values of 1.5, 1.2, and 1.7 mg/~cm3 K!. As seen in
Fig. 3, our density values show a slight tendency towa
curvature at higher temperatures, implying thatL is not con-
stant over the whole liquid range. This feature ofL has been
noticed for other metals as well, e.g., Al, Sn, and Ga@36#.
We note, however, that the linear approximation for the te
perature dependence of the liquid density is a very good o

The isobaric volume expansion coefficient of the liqu
av
l , is related to the change of density with temperature,

is given by

av
l [

1

V S ]V

]TD
P

52
L

r
. ~3!

The number of simulations is not sufficient for a direct d
rivative to be calculated. Using the linear approximati
given by Eq. ~2!, we can write down the temperature
dependent volume expansivity explicitly as

av
l 5

2L

rs- l1L~T2Ts- l !
. ~4!

We compare our results for this quantity with experimen
findings in Fig. 4. The melting point expansivity turns out
beav

l (Ts- l)51.2531024 K 21, slightly higher than reported
experimental@27,36# values of 0.8631024, 0.6931024, and
0.9831024 K 21. A glance at the experimental isobaric the
mal expansivities of the other two noble metals reveals t
av
l (Ts- l)50.9831024 K 21 and 1.031024 K 21 for Ag and

. FIG. 4. The thermal expansion of liquid Au versus temperatu
as calculated from a linearization of the liquid density according
Eq. ~4!. The other curves refer to experimental results.
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5540 55BOGICEVIC, HANSEN, AND LUNDQVIST
Cu, respectively@6#. A summary of calculated and exper
mental thermal properties of Au is presented in Table I.

B. Molecular-dynamics results

The molecular-dynamics simulations provide informati
about both static and dynamic properties of the system un
consideration. For each run, the kinetic and total energies
closely examined. The temperature is deduced from the
mentapi of the atoms according to

3

2
NkBT5K (

i51

N
1

2m
pi
2L . ~5!

The total energy is extracted and checked for indications
possible energy-conservation violations, indicating the us
too large a time step. The results of the MC and MD tot
energy calculations are plotted together in Fig. 1.

In order to verify that the simulation boxes indeed hav
zero-pressure average, the instantaneous pressure of th
tem is calculated using the virial equation@26#,

P5
N

V
kBT1

W
V

5
1

3V(
i51

N upi
2u
m

1
1

3V(
i51

N

r i•f i . ~6!

The thermodynamic pressure is obtained from a simple t
average over the instantaneous pressureP. Even though the
limited size of the system results in quite large pressure fl
tuations, reaching values of the order of 104 atm for the
smallest slabs, the average pressure has remained zero w
some 100 atm for all MD simulations reported in this stud
A more exact value for the pressure requires an analysis
larger number of configurations.

A good indicator of the structure of a given system
atoms is provided by the pair distribution function. Th
quantity is defined as

g~r !5
V

N2 K ( ( d~r2r i j !L . ~7!

TABLE I. Comparison between calculated and experimen
thermal properties of Au.

Simulation Experiment Unit

Ts-l 1398 1338a K
DHs-l 0.10 0.128,b 0.132c,d eV/atom
CP
s 28.5 28.4,e 28.4f J/~mol K!

CP
l 30.91 30.98,e 29.29b,d J/~mol K!

DVs-l 5.54 5.5g %
rs-l 16.9 17.4h g/cm3

L 2.1 1.5,b1.2,h1.7h mg/~cm3 K!

a l
s 16.4 16.7b 1026 K21

av
l (Ts2 l) 1.25 0.86,b 0.69,h 0.98h 1024 K21

aReference@31#. eReference@28#.
bReference@27#. fReference@29#.
cReference@33#. gReference@6#.
dReference@34#. hReference@36#.
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Figure 5 compares the calculated normalized pair distri
tion function with experimental findings@5# at four tempera-
tures in the liquid phase. The slight temperature differen
between compared pair distribution functions is a con
quence of simulating in the microcanonical ensemble, wh
the thermalization procedure and fluctuations in the kine
energy can prevent the exact setup temperature from b
reached in simulations. Within these small temperature
ferences, the overall agreement is very good, however, le
ing some support to the ability of the interatomic EMT p
tential to account for intermediate-temperature properties
liquid Au. The quantitative accuracy of the experimen
curve at 1973 K is reported to be inferior to the other me
surements@5#, which may explain why the main peak i
somewhat higher than in our calculation. The very small d
ferences between the compared near-melting-point pair
tribution functions are not as easily explained, but they
not a consequence of incomplete melting in the simulatio

The self-diffusion coefficientDs is calculated from the
slope of the mean-square displacement curvef (t) of the at-
oms according to the Einstein equation

6Dst5^@DR~ t !#2&[ f ~ t !, ~8!

where

f ~ t !5
1

Na

1

Nf /2
(
i51

Nf /2

(
j51

Na

(
k50

Nf /2

@R~ i j1kj !2R~ i j !#
2. ~9!

In these equations,Nf is the number of configurations tha
are examined andNa is the number of atoms in the system
The last equation illustrates how we have taken advantag
a dynamic origin to improve on our statistics. This way
calculating f (t) produces points on the mean-square d
placement curve with constant statistics@38#. For example, if
Nf51000, each of the 500 points on thef (t) curve for a
1000-atom slab will be an average of 500 000 values.

l

FIG. 5. The pair distribution function at various temperatur
calculated from MD simulations and compared with experimen
findings. Theg values correspond to the two lowest plots. The oth
pairs of calculated and experimental curves are shifted up by
relative to the previous pairs of plots.
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The choice of time interval between investigated conse
tive configurations in this study optimizes the ratio betwe
amount of statistically uncorrelated data and required sim
lation time. The number of values that is averaged ove
Eq. ~9! scales linearly with the number of atoms in the sy
tem and quadratically with the number of examined confi
rations. In calculating diffusivities with this algorithm, it i
therefore more time efficient to use a smaller slab, if p
sible, and simulate for longer times.

The results of our diffusion investigations are illustrat
in Fig. 6 and also tabulated in Table II. Previously repor
‘‘near-melting-point’’ diffusivities of 3.7531025 cm2/s, ob-
tained from computer simulations@23#, 2.7531025 cm2/s,
calculated utilizing viscosity measurements@24#, and 2.1
31025 cm2/s, an experimental value@22#, are not included
in the figure. One reason for this is that, in all three case
value for the temperature is not stated. Another reason,
cerning the last value, is that we have not been able to ve
the claimed diffusivity from an examination of the origin
reference.

The fluctuations in kinetic energy during the MD simul
tions bring about an estimated uncertainty of 0.08% in
ported temperatures, which at most means a tempera
spread of 2.5 K near the boiling point. Thanks to the effici
algorithm for calculating diffusivities, and the large numb
of uncorrelated configurations, the estimated uncertainty
the self-diffusion coefficients is at most 0.3% for the 51
atom slab and less than 0.1% for the 1000-atom slab.
error bars of these two quantities are too small to be draw
Fig. 6. For errors arising from the use of a finite-size syste
see below.

Our main goal with this work is to present a collection
diffusivity data for liquid Au. This information can be use
for comparisons with theoretical predictions of various d
fusion models. The large abundance of these models, an
lack of certain thermal data, allow us at this stage only
make very selective comparisons. More detailed studie
selected diffusion models are in progress@39#. We will here
focus on the qualitative temperature dependence of the
fusion coefficient, make a few comparisons with comm

FIG. 6. The diffusivity of liquid Au as a function of tempera
ture. The estimated uncertainties in temperature and diffusivity
too small to be drawn in the figure~see Sec. IV!. The data can also
be found in Table II.
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analytical expressions, and whenever appropriate refer to
fusion theories that predict such a behavior. A discussion
physical aspects of diffusion models in general is presen
in the next section.

The first fit we examine has a temperature depende
given by the empirical Arrhenius functional form,

Ds5D0exp
2Q/kBT, ~10!

which when fitted to our diffusivity data, yields an activatio
energy Q50.41 eV and a prefactorD058.6931024

cm2/s. Although none of the existing diffusion models w
have encountered predicts this temperature dependenc
the diffusivity, the above form is widely used to present d
fusion measurements. The second fit is linear in temperat
as foretold to first order by several diffusion models@40,41#.
The results of these fits are displayed in Fig. 6. Two facts
immediately apparent. First, it is seen how very hard it c
be to distinguish between the linear and Arrhenius form
even over a wide temperature range. Second, it is evid

re

TABLE II. Self-diffusion coefficients of liquid Au calculated
from MD simulations. For error estimates, see Sec. IV.

T ~K! Ds (10
25 cm2/s!

1449 3.90
1479 3.87
1500 4.12
1514 4.18
1531 4.43
1561 4.41
1588 4.77
1650 4.90
1651 5.02
1702 5.60
1746 5.70
1787 6.11
1787 6.13
1866 6.50
1878 6.85
1879 6.80
1935 7.03
1998 7.61
2055 8.30
2064 8.36
2084 8.51
2165 9.03
2173 8.97
2182 9.14
2290 10.11
2301 10.50
2405 11.32
2513 12.42
2608 13.48
2697 14.49
2792 15.61
2897 17.37
3073 19.59
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that neither of the two forms accounts very well for the c
culated diffusion behavior at low and very high tempe
tures.

The third fit is quadratic in temperature, as proposed
several theories@42,43#, and certainly looks the best of th
three candidates. Thex2 ratios between the parabolic
Arrhenius and linear relations are 1:9:12. It is seen in Fig
how the parabolic curve very neatly picks up not only t
extreme low- and high-temperature points, but also
intermediate-region points. A two-parameter power
Ds5kTd ~not shown in the figure!, returnsd52.08 as the
most favorable power for the temperature dependence o
diffusivity.

It is very interesting to note that recent high-accura
self-diffusion measurements in microgravity present
sameT2 dependence for liquid Pb, Sb, and In@44#. These
measurements back up previous results from an earlier s
mission, where also liquid Sn was found to obey theT2 law
@45#. The estimated error in diffusivity is as low as about
below 1.5% and 1.0% for the two missions, respective
mainly due to the absence of any convectional interferen
Moreover, a two-parameter power fit to the measu
Ds(T) dependence for liquid Pb returned@44#
dPb52.0560.05, in excellent agreement with ou
dAu52.08. It is also noteworthy thatDs values from space
experiments are about 20–40 % lower than the best gro
based values, a clear indication of convection contributi
in ground experiments@45#.

These microgravity experiments are all performed
nonsimple metals and are undoubtedly among the most
curate diffusivity measurements performed to this date. T
agreement between these experiments and our simulatio
therefore yet another indication that the EMT descript
works well in describing liquid dynamics.

As already pointed out in Sec. I, the diffusivity seems
increase by invoking many-body contributions to the int
atomic potential in computer simulations. We are at t
point compelled to believe that one reason for this is that
many-body potential allows for a more well-described th
mal expansion than common pair potentials do. Natura
further investigations in the spirit of the one by Chenet al.
@20# is needed to clarify this issue@39#.

Most computer simulations of liquids utilize aneffective
pair potential that is optimized by some kind of fitting pr
cedures in order to describe a system well at, e.g., a ce
temperature and density. This is an implicit way of invoki
many-body effects. In order to look at the same system
another thermodynamic ambient, a new effective poten
must be derived. Such potentials can thus not be very
ably used to assess, e.g., the temperature dependence
self-diffusion coefficient. It is more appropriate for this pu
pose to maintain the same potential throughout the varia
of the intensive variables, as done in this study. This, ho
ever, does not work very well for pair potentials. One ma
reason for this is that the many-body contributions no lon
can be accounted for. Pair potentials of this kind tend
underestimate the thermal expansion, resulting in a syste
too high a density. This is analogous to applying an exter
hydrostatic pressure to the real system, a condition tha
well known for effectively decreasing the diffusion coef
cient.
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A first indication of the dynamics in a system is obtain
by examining the velocity correlation function~VCF!. This
function relates the velocity of an atomi at a certain time
t50 to its velocity at a later time,cvv5^vi(t)•vi(0)&/
^vi(0)•vi(0)&. It is one of the simplest, yet most importa
examples of time correlation functions. For instance, wh
integrated in time, it produces the diffusion constant. T
procedure for extracting this quantity is analogous to the
for calculating diffusivities. The results at some select
temperatures are displayed in Fig. 7, and commented o
Sec. V, in connection with a discussion of atomic dynami

It is at this point appropriate to discuss the size effe
that arise from using finite simulation cells. They are surpr
ingly small. It is actually quite remarkable that the sm
simulation box of 125 atoms used in the Monte Carlo sim
lations qualitatively and quantitatively produces very go
results. Several MC simulations on slabs of 216 and 5
atoms with periodic boundary conditions imposed in all thr
directions show~within the estimated margins of error! no
deviations from the results of the smaller slab as conce
atomic volume and potential energy. Only the fluctuations
these quantities are slightly decreased.

The molecular-dynamics simulations seem also to be
markably insensitive to the system size. The differences
diffusivity that emerge from the few MD runs performed o
larger slabs of 1728 atoms all fall within 1% of the small
systems. Again, the small number of simulations on
larger simulation box prevents a detection of possible tren
If anything, it is believed that larger systems would sligh
increase the self-diffusion coefficients, rather than the op
site. Similar size insensitivities~of static properties! have
been reported previously@46#.

V. DISCUSSION

The few scattered diffusivity data that presently exist
pure metallic liquids suffer from large uncertainties. T
only exception to this fact is due to recent high-accuracy d
provided by means of micro gravity measurements. Unfor
nately, such experiments are by their nature very sca
Judging from the development of this field over the last
years or so, it seems likely that the ever growing use

FIG. 7. The normalized velocity correlation function at vario
temperatures in the liquid phase of gold.
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computer simulations eventually will change this situatio
through the buildup of an extensive database of hi
accuracy diffusivity data that can be cross-checked with, e
microgravity results. It is the intention of this study to pr
vide a small contribution to such a collection of diffusio
coefficients.

After the explosion of diffusion models in the 1970s, a
most a total stagnation has occurred. Apart from a variety
hard-sphere models@47–49#, there is an abundance of atom
transport theories such as the hole theory@50#, the free vol-
ume theory@51,52#, the significant structure theory@40#, the
quasicrystalline theory@53#, the linear trajectory theory@41#,
and the fluctuation theory@42,54#. Comprehensive review
of many other diffusion models have been written previou
@6,55,56#.

Not very surprisingly, the majority of the existing mode
are influenced by either solid or gas theories, as indicated
their names. However, the symmetries present in ideal so
and gases allow detailed characterizations of states, and
accurate descriptions. The disorder of liquids gives ro
only for models that are harder to verify. Most of the mod
theories predict a complicated temperature dependence o
diffusivity. Some utilize concepts like viscosity@40#, surface
tension @57#, or compressibility@54#. Hereby they may be
even harder to verify, as the problems of measuring th
quantities are much the same as in diffusion measureme

With the currently available precision, the temperatu
range accessible for liquids is on the verge of being too n
row for a distinction to be made between different tempe
ture dependencies of the diffusion coefficient. As indica
in Sec. IV, and reported previously@58#, it is very easy to fit
several totally different functional forms to one set of da
even over the full liquid range. For now, however, diffusio
models have to be viewed from their level of physical und
standing.

Just by glancing at a computer screen during a simula
~with a reasonable description of the atomic interaction!, one
can get an impression of what is physically sound. A feat
that immediately catches one’s attention is that self-diffus
in liquids certainly looks like a highly collective process,
which many atoms make small correlated moves. Deta
trajectory studies, where we have tagged and closely
lowed the motion of individual atoms, directly verify thi
view of diffusion. An illustration of a typically observed dif
fusion behavior is shown in Fig. 8. This kind of microd
namical behavior was suspected already in the 1970s@56#,
and seems, at present, to be commonly accepted. There
no doubt, more advanced ways of examining the deta
dynamics of atoms in metallic liquids, e.g., by examining t
Van Hove distribution function@4#. However, the mentioned
crude technique is presently adequate for our purposes.

Details of the dynamic behavior of diffusing atoms c
also be detected in the VCF shown in Fig. 7. The first mi
mum is markedly more shallow than in the solid case, in
cating a heavily reduced caging effect. This is a clear im
cation of the increased mobility atoms in a liquid ha
compared with atoms in a solid. With increased tempe
tures, this initially negative-valued minimum becomes ev
more shallow, and is eventually smeared out.

One direct result of these observations is that the diffus
model most consistent with our results and the thus provi
,
-
.,

f

y

by
ds
us

l
the

se
ts.
e
r-
-
d

-

n

e
n

d
l-

re,
d

-
i-
i-

-
n

n
d

view of the physics of liquids is the fluctuation model
Swalin @42,54#. This theory of diffusion depends on loca
density fluctuations, but unlike many other models@43,50–
52# that depend on unphysical assumptions about disc
jumps over interatomic distances, it does not require the
ation of a critical void volume. So far, one can only noti
that it has met certain success, and has been regarded
‘‘remarkably good’’ @56,59# model. The first version@42# of
the fluctuation model predicts aT2 dependence of the self
diffusivity, while the second, revised, version@54# proposes
a TbT dependence under isobaric conditions. At present,
lack of compressibility data prevents a direct test of this p
diction. Calculating the isothermal compressibility from M
simulations requires larger systems than we employ in
study. Utilizing the experimentally available adiabatic com
pressibility as a first approximation yields a good qualitat
agreement over the narrow temperature range set by the
periment@39#.

Another consequence of our observations concerns
question of activation energies. As previously pointed out
Nachtrieb@59#, the use of an Arrhenius expression for re
resenting the temperature dependence of the diffusivity
liquids has, basically, only historical reasons. The concep
an activation energy has simply been adopted from so
state vacancy or impurity diffusion upon findings that diff
sion rates in the liquid conveniently can be fitted to an e
ponential dependence on 1/T. At the time, diffusion in
liquids was thought to take place via a vacancy mechani
in the same manner as in solids, thereby somewhat justify
this formalism. Today, we know better. We also know th
an Arrhenius temperature behavior of the diffusion coe
cient is more an exception than a rule@59–62#. Still, this
form of representation is readily utilized, and seems to
‘‘the accepted law in most of the literature’’@44#, in spite of
its early abandonment by mainly liquid theorists and the
sued warnings@56,59,63#. The existing diffusion data, which
encompass around a dozen liquid metals@6,56#, are with few
exceptions presented in the Arrhenius formalism. The sit
tion is the same for results from computer experiments s
as this one@23,64#. We believe this use of the Arrheniu
formula in liquid metals should have been abandoned lo
ago. We will now try to present some aspects of the atom
dynamics of liquid metals.

FIG. 8. A two-dimensional projection of a typical trajectory pl
of the atomic motion in a metallic liquid. The atoms are tagged a
followed for 1.3 ps. Inserted in the figure is a corresponding plot
a solid ~both boxes have the same area, even if the scales are
ferent!.
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5544 55BOGICEVIC, HANSEN, AND LUNDQVIST
In the solid, an atom has a relatively low kinetic energy
surpass the ridges of time-independent energy barriers~adia-
batic approximation applicable! it is surrounded with. It will
therefore vibrate in a local energy minimum until it, aft
many vibrations, eventually makes a jump over one of
lower barriers into a new position. In this state of matter,
barriers accessible to diffusing atoms are few and of w
defined sizes. Usually there is one specific route, a diffus
channel, with the lowest-energy barrier to motion that
atoms will tend to take. The magnitude of this barrier c
for instance, be extracted from fitting experimental findin
of diffusivity to Eq. ~10!. Figure 9~a! illustrates this view of
the diffusion process in solids.

Extending this picture to the liquid region is anything b
trivial. Unlike in the solid, there is no static background
give rise to well-defined energy barriers in the liquid. The
is instead a constant motion ofall of the constituent atoms
The vibrations in the solid are thus essentially the motion
the liquid. The rapid atomic motion in liquids, taking plac
on the femtosecond time scale, makes it impossible to in
duce order in the sense of viewing diffusion as jumps ove
certain energy barrier. There will at all times exist a bro
spectrum of close-lying energy barriers@65#. Recently,
progress has been made using the liquid-state normal m
analysis@65,66#. The dynamics of a liquid in a certain con
figuration is in this theory described by oscillations obtain
from the stable normal modes and saddle points obta
from the unstable normal modes.

Naturally, it is in principle possible to view the diffusio
processes in a liquid as hops over a certaineffectiveenergy
barrier. This is the core of the Arrhenius formalism. T
price to pay for maintaining this solid-state picture of diff
sion is that an entire set of energy barriers has to be con
ered and that the activation energy will be temperature
pendent, as foretold by Swalin@42,54#. Since the kinetic
energy in the liquid region is of roughly the same size as
potential energy, the energy situation of Fig. 9~a! will change
markedly, as schematically depicted in Fig. 9~b!. Now, at a
specific temperature, a diffusing atom will effortlessly s
over the lower barriers and there will, on average, exis
certain effective energy barrier that will give rise to an ac
vation energy that is measurable through experiments. If
temperature is changed, the atom will face another effec
energy barrier and thus the activation energy will be te
perature dependent.

FIG. 9. Atoms in a stylized one-dimensional potential ene
slice of a solid and a liquid. In the solid~a! this picture is static,
whereas in the liquid~b! it changes continuously.
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This picture implies an effective activation energy th
increases monotonically with temperature, even though
this point, it is hard to make any statements about the ex
nature of this temperature dependence of the activation
ergy. It is directly related to the detailed energy barrier d
tribution in the liquid and may very well be system depe
dent. It is therefore very misleading to talk about a sing
activation energy in liquid metals. Obviously, others ha
run into a similar nomenclature dilemma, thereby the appe
ance in literature of the so-called ‘‘apparent’’ activation e
ergy @6,54,59#. In addition, it has been argued recently th
the precise distribution of energy barriers plays a crucial r
in determining the temperature dependence of the s
diffusion coefficient@65#.

Since the temperature dependence is far from establis
we advocate tabular-form presentations of diffusivity data
the future. The usage of parallell computers now enab
extensive simulations on very large systems that prov
high accuracy. Together with improving experimental tec
niques, this should soon allow for an accurate assessme
the temperature dependence of the self-diffusion coeffici
and an answer to the question of how general such a be
ior is for different atomic systems.

VI. CONCLUSIONS

In conclusion, we have shown that the EMT many-bo
potential for solid Au very accurately accounts for structur
thermal, and dynamical properties of the liquid phase of t
metal. The combination of MC simulations within th
isobaric-isothermal ensemble and MD simulations in the
crocanonical ensemble is found to work very well, even
high temperatures. For the first time, extensive high-accur
diffusivity data resulting from calculations with a many-bod
potential are presented for a metal, covering the entire liq
temperature range. This is also the first study concerning
diffusivity of the technologically very important metal A
that goes beyond the melting point. AT2 law is calculated, in
concurrence with very recent microgravity measurements
other nonsimple metals. A discussion on some microsco
aspects of the dynamics of atoms in metallic liquids is p
sented. The use of an Arrhenius expression to represent
fusivity data in metallic liquids is reexamined and, aga
found to be inadequate and misleading.
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